Matemáticos

Línea de Tiempo Fotos Dinero Estampillas Bosquejo Búsqueda

Hugo Dyonizy Steinhaus

Fecha del nacimiento:

Lugar del nacimiento:

Fecha de la muerte:

Lugar de la muerte:

14 Jan 1887

Jaslo, Galicia, Austrian Empire (now Poland)

25 Feb 1972

Wroclaw, Poland

Presentación Wikipedia
ATENCIÓN - traducción automática de la versión inglesa

Hugo Steinhaus en Galicia nació en una familia de intelectuales judíos. La ciudad de su nacimiento, Jaslo, fue en Galicia, cerca de la mitad de camino entre Cracovia y Lvov (aunque un poco más cerca de Cracovia Lvov). Galicia se adjunta a Austria en 1772 la partición de Polonia. Sin embargo, por el momento Steinhaus nació en Jaslo, Austria había llamado la región del Reino de Galicia y Lodomeria y darle un alto grado de autonomía administrativa. Steinhaus era el tío de una persona importante que un político en el Parlamento austríaco.

Steinhaus estudiado durante un año en Lvov, pasó un período en Munich, pero luego pasó cinco años estudiando matemáticas en la Universidad de Gotinga. Allí fue influenciado por una sorprendentemente fuerte grupo de matemáticos, entre ellos Félix Bernstein, Carathéodory, Courant, Herglotz, Hilbert, Klein, Koebe, Edmund Landau Landau (aunque sólo llegaron a Steinhaus después de Gotinga había estado allí tres años), Runge, Toeplitz, y Zermelo. Para su doctorado Steinhaus estudió bajo Hilbert 's supervisión. Fue galardonado con el doctorado, con distinción, a una disertación Neue Anwendungen des Dirichlet'schen Prinzips en 1911.

La principal influencia sobre la dirección que la investigación Steinhaus se fue ninguno de los grandes matemáticos de Göttingen en cifras, sino más bien la influencia provino de Lebesgue. Steinhaus estudiado Lebesgue 's dos grandes libros Lecciones sobre la integración y la investigación de las funciones primitivas (1904) y Lecciones sobre las series trigonmétriques (1906) alrededor de 1912 después de terminar su doctorado.

Tras el servicio militar polaco en la Legión en el comienzo de la Primera Guerra Mundial, vivían en Cracovia Steinhaus. El orador se refiere en la forma en que, a pesar de la guerra en 1916, es seguro caminar en Cracovia:

Durante una de esas me escuchadas a pie de las palabras "Lebesgue medida". Me acerqué a la banca del parque y me presenté a los dos jóvenes aprendices de las matemáticas. Me dijeron que había otro compañero por el nombre de Witold Wilkosz, a quien elogió extravagantemente. Los jóvenes fueron Stefan Banach y Otto Nikodym. A partir de ahí, se reunirá de forma periódica, y ... hemos decidido establecer un matemático sociedad.

Matemático Steinhaus propuesto que la sociedad se inició como la Sociedad de Matemáticas de Cracovia y, poco después de que terminó la guerra, se convirtió en la Sociedad Matemática polaco. Steinhaus describe los inicios de la nueva matemática en la sociedad en un pasaje que nos dice mucho sobre su vida en Cracovia, en el momento:

Como iniciador de la idea, he hecho mi habitación disponible para las reuniones y, como primer paso en la preparación, clavó un hule pizarra en la pared. Cuando el francés gerente de la pensión vio lo que había hecho, fue aterrorizada - ¿cuál fue el titular va a decir? Me tranquilizó recordando su establecen que su el propietario del edificio fue el hermano de mi tío en la ley, y perdona mi transgresión. Sin embargo, yo había hecho un error. D. L ocupa la posición de una tradicional, duro-y era dueño impasible por el noble objetivo de la pizarra se suponía que iba a servir. La ampliación de la sociedad - es el primer rayo de luz de este tipo en Polonia.

También en este momento Steinhaus inició una colaboración con Banach y su primer trabajo conjunto se completó en 1916. Steinhaus asumió un nombramiento como asistente en la Universidad de Kazimierz enero y en Lvov, en torno a 1920, fue promovido a Profesor extraordinario. Banach fue por esta vez sobre el personal en Lvov y la escuela creció rápidamente en importancia. Kac, quien era estudiante de Steinhaus en Lvov durante la década de 1930, se describe la influencia de Lebesgue 's de trabajo sobre la escuela de Lvov:

La influencia de Lebesgue en la escuela Lvov fue muy directa. La escuela, fundada ... por Steinhaus y Banach, concentradas principalmente en el análisis funcional y sus diversas aplicaciones, la teoría general de la serie ortogonal, y la teoría de la probabilidad. No cabe duda de que ninguna de estas teorías se han alcanzado hoy el nivel de importancia fundamental sin una comprensión de la medida de Lebesgue e integral. Por otro lado, las ideas de Lebesgue medida e integral encontrado su más notable y fructífera hay aplicaciones en Lvov.

Steinhaus fue la figura principal en la Escuela de Lvov hasta 1941. En 1923 publicó en la primera fundamenta Mathematicae rigurosa cuenta de la teoría de tirar monedas sobre la base de medida de la teoría. En 1925 él fue el primero en definir y discutir el concepto de estrategia en la teoría de juegos. Steinhaus publicó su segundo documento conjunto con Banach Sur en 1927 el principio de la condensación de singularités. En 1929, junto con Banach, comenzó una nueva revista Studia Mathematica Steinhaus y Banach y se convirtió en el primer editores. La política editorial fue:

... centrarse en la investigación en el análisis funcional y otros temas relacionados.

Otra importante empresa editorial en la que participó Steinhaus, que comenzó en 1931, fue una nueva serie de Monografías de Matemática. La serie fue creada bajo la dirección de Steinhaus y Banach de Lvov y Knaster, Kuratowski, Mazurkiewicz, y Sierpinski de Varsovia. Una importante contribución a la serie fue escrita por un volumen Steinhaus conjuntamente con Kaczmarz en 1937, La teoría de la serie ortogonal.

Steinhaus es mejor conocido por su libro de Matemáticas Instantáneas escrito en 1937. Kac, en escrito dice:

... a entender y apreciar la matemática Steinhaus estilo, hay que leer (o más bien mirar) instantáneas. ... diseñado para atraer a "los científicos en el niño y en el científico" ... expresa, no siempre explícita y, a veces incluso inconscientemente, lo que la matemática es Steinhaus pensamiento y debería ser. Steinhaus a las matemáticas es un espejo de la realidad y la vida tanto de la misma manera que la poesía es un espejo, y le gustaba "jugar" con los números, series, y las curvas, el modo en que un poeta juega con las palabras, frases y sonidos.

Stark describe Steinhaus conferencias en Lvov:

Mi clase se ha guiado por el profesor Steinhaus. Fue una clase muy grande, y el análisis conferencia asistieron más de 220 estudiantes ven en un pequeño y mal ventilado aula, de pie en los pasillos, y sentado en el marcos de las ventanas. ... Su figura, alta encaramado en el podio por un pequeño cinco por cinco pies pizarra dominado la habitación llena. ... Steinhaus, a pesar de la atención a la preparación, las clases eran demasiado difíciles para el estudiante promedio.

Los matemáticos de la escuela Lvov hizo una gran cantidad de investigación matemática en los cafés de Lvov. El Café escocés fue el más popular entre los matemáticos, en general, pero no con Steinhaus que (de acuerdo con Ulam):

... normalmente frecuentado una tienda de té más gentil se jactó de que la mejor pastelería en Polonia.


Esto fue Ludwik Zalewski de Confitería a 22 Akademicka Street. Fue en el Café escocés, no obstante, que el famoso Libro escocés que consiste en abrir las preguntas formuladas por los matemáticos que trabajan allí entró en vigor. Steinhaus, que a veces se unió a sus colegas en el Café Escocés, contribuyeron diez problemas al libro, incluido el final de un escrito el 31 de mayo de 1941 sólo días antes de las tropas nazis entraron en la ciudad.

Usted puede ver una imagen de la Scottish Café.

Cuando la perspectiva de la guerra se avecina en 1938, Steinhaus Lebesgue propuesto para un doctorado honoris causa de Lvov. Steinhaus bromeó con que Kac:

No será un mal registro para dejar atrás, de haber tenido Banach como la primera y la última Lebesgue como doctorando.

La recepción de Lebesgue, después de la concesión de su título, se celebró en el Café escocés, pero sólo asistieron quince matemáticos, lo que demuestra que la escuela de matemáticas en Lvov había disminuido considerablemente debido a la situación política. Steinhaus pasado los años de la guerra a partir de junio de 1941 se esconde de los nazis, que sufren grandes dificultades, pasando hambre la mayoría de las veces, pero siempre pensando en las matemáticas:

... incluso entonces, su mente inquieta es fuerte en el trabajo de una multitud de ideas y proyectos.

Steinhaus en 1945 se trasladó a la Universidad de Wroclaw, pero realizado muchas visitas a las universidades en los Estados Unidos, incluyendo de Notre Dame. Kac escribe en:

... fue él quien, quizás más que cualquier otra persona, polaco, contribuyó a aumentar la matemática de las cenizas a los que se había reducido por la Segunda Guerra Mundial a la posición de la nueva fuerza y el respeto que ahora ocupa.

Tras el final de la Segunda Guerra Mundial, la Reserva de Escocia, que parece haber sido conservado a través de la guerra por Steinhaus, ha sido enviado por él a Ulam en los Estados Unidos. El libro fue traducido al Inglés por Ulam y publicado. Steinhaus, ahora en la Universidad de Wroclaw, decidió que la tradición de reservar el escocés era demasiado buena para terminar. En 1946 extendió la tradición de Wroclaw a partir de libros de la Nueva Escocia.

Vamos a examinar por último, algunas de las contribuciones matemáticas Steinhaus la que no hemos mencionado anteriormente. Steinhaus propuso en 1944 el problema de la división de un pastel en n piezas de modo que sea proporcional (cada persona está satisfecha con su participación) y la envidia libre (cada uno está convencido de que nadie está recibiendo más de una parte equitativa). Para n = 2 el problema es trivial, una persona que corta el pastel, el otro escoge su pieza. Steinhaus encontrado proporcional, pero no una solución sin envidia para n = 3. Una solución a la envidia libre Steinhaus del problema para n = 3 fue encontrado en 1962 por John Conway y H, independientemente, por John Selfridge. N general para el problema ha sido resuelto por Steven BRAMS y Alan Taylor en 1995.

Steinhaus la bibliografía, ver, contiene 170 artículos. Realizó una importante labor sobre el análisis funcional, pero que él mismo describió su mayor descubrimiento en este ámbito como Stefan Banach. Steinhaus Algunos de los primeros trabajos fue la serie sobre trigonométricas. Fue el primero en dar algunos ejemplos que puedan dar lugar a progresos en el tema. Dio un ejemplo de una serie trigonométricas que divergieron en cada punto, mientras que el coeficiente tiende a cero. También dio un ejemplo de una serie trigonométricas que convergieron en un intervalo, pero divergen en un segundo intervalo.

Como hemos señalado anteriormente, otras contribuciones de Steinhaus se ortogonal en serie, la teoría de la probabilidad, funciones reales y sus aplicaciones. En particular, se asocia con la teoría de funciones independientes, derivados de su trabajo en la teoría de la probabilidad, y él fue el primero en hacer precisa los conceptos de "independiente" y "distribuida de manera uniforme". Además de su famoso libro de Matemáticas Snapshots también escribió el aclamado Cien Problemas ....

Source:School of Mathematics and Statistics University of St Andrews, Scotland